Nonideal Effects in SC circuits

Gabor C Temes
School of EECS
Oregon State University

Rev. 9/4/2011

Components and Nonidealities

- Switches:

Nonzero "on"-resistance
Clock feedthrough / charge injection
Junction leakage, capacitance
Noise

- Capacitors:

Capacitance errors
Voltage and temperature dependence
Random and systematic variations
Leakage

- Op-amps:

DC offset voltage
Finite dc gain
Finite bandwidth
Nonzero output impedance
Noise

Switched-Capacitor Integrator

Nonzero Switch "On"-Resistance

C is charged exponentially. Time constant must be sufficiently low. Body effect must be included!

To lower on-resistance and clock feedthrough: CMOS gate; Wp,Lp $=W n, L n$. For settling to within $0.1 \%, T_{\text {settling }}>7 R_{\text {on }} C$ (worst-case $R_{\text {on }}$).

Digital CMOS Scaling Roadmap

Want analog circuit to operate at low supply voltage

Predicted Dimensions

Floating Switch Problem in Low-Voltage

Small headroom

NO headroom
-FORBIDDEN REGIONS FOR SIGNAL

Using Low-Threshold Transistors

- Precise control over process and temperature difficult
- Switch leakage worsens as threshold voltage is lowered (i.e. hard to turn off)

NO headroom

Increased headroom

Using Clock Voltage Booster

- Boosted clock voltage (e.g. $0 \rightarrow 2 \mathrm{Vdd}$) is used to sufficiently overdrive the NMOS floating switch - useful in systems with low external power supply voltage and fabricated in high-voltage CMOS process Battery,harvested energy may be used!
\rightarrow Voltage limitation is violated in low-voltage CMOS

Using Boostrapped Clock

Abo et al., JSSC-1999
Steensgaard, ISCAS-1999
Singer et al., ISSCC-2000
Dessouky et al., JSSC-2001
(fast) Hernes et al., ISSCC-2004

- Principle: pre-sample Vdd before placing it across Vgs (various lowvoltage issues complicate implementation)
- Input sampling such as this can be used for low-voltage CMOS or for high-linearity sampling
- No fundamental or topological limitation on higher input signal frequency vs. sampling frequency
-BUT BREAKDOWN, ADDED SWITCH TURN-ON PROBLEM.

Switched-Opamp Technique

- Floating switch is eliminated
- Opamp output tri-stated and pulled to ground during reset ϕ_{2}
\rightarrow Slow transient response as opamp is turned back on during ϕ_{1}

Crols et al., JSSC-1994(1.5-V)
Peluso et al., JSSC-1997(1.5-V)
Baschirotto et al., JSSC-1997(1-V)
Peluso et al., JSSC-1998(1-V)
Cheung et al., JSSC-2002 (1-V)

Switched-opamp integrator

Conventional integrator

Switched-Opamp Example

Crols et al., JSSC-1994
Peluso et al., JSSC-1997
The entire opamp is turned off during ϕ_{2}.
Demonstrated $1.5-\mathrm{V}$ operation $(\Delta \Sigma)$ with V tn $=|\mathrm{Vtp}|=0.9 \mathrm{~V}$. 115 kHz at -60 dB THD \& 500 kHz at -72 dB THD.

\rightarrow Baschirotto JSSC-1997: 1-V operation
\rightarrow Peluso JSSC-1998: 0.9-V operation
1.8 MHz at -40 dB THD

Cheung et al., JSSC-2002(1-V)

Opamp-Reset = Unity-Gain Configuration

Bidari et al., ISCAS-1999
Keskin et al, ESSCIRC-2001 \& JSSC-2002
Chang et al, CICC-2002 \& JSSC-2003
Chang et al, VLSI-2003 \& TCAS1-2005
Li et al, VLSI-2004 \& JSSC-2005

- High speed operation
- Free of reliability issues

Switched-opamp integrator

Floating Reference Avoids Fwd Bias

- C3 is precharged during ϕ_{1}
- C3 (floating reference) in feedback during ϕ_{2}
- DC offset circuit (C4=C1/2) compensates for Vdd reset of C1
\rightarrow effective virtual ground $=\mathrm{Vdd} / 2$

-Simpler: 2 switches in series with C2, grounded turned off first.

Switched-RC = Resistor Isolation

- No floating switch
- Highly linear sampling
- Free of reliability issues
-R must be chosen properly.

Conventional integrator

Switched-opamp integrator

Switched-RC = Resistor Isolation

Ahn et al., ISSCC-2005 Paper 9.1

Charge Injection (1)

- Simple SC integrator

S1 structure

Charge Injection (1) (Cont'd)

- The lateral field is v / L, the drift velocity is $\mu \nu / L$. Therefore, the current is

$$
i=q_{c h} \cdot \mu \cdot v / L^{2}
$$

- The on-resistance is

$$
R_{o n}=v / i=L^{2} /\left(q_{c h} \cdot \mu\right)
$$

- and hence

$$
R_{o n} \cdot q_{c h}=L^{2} / \mu
$$

holds.

Charge Injection (2)

From device physics,

$$
q_{c h}=-W \cdot L \cdot C_{o x} \cdot\left(V_{d d}-v_{i n}-V_{t n}\right)
$$

Unless S1 is in a well, connected to its source, Vtn depends on Vin, so qch is a mildly nonlinear function of Vin.

When S1 cuts off, part of qch(qs) enters C1 and introduces noise, nonlinearily, gain and offset error.

To reduce qs, choose L small, but and Ron large. However, for 0.1% settling

$$
R_{o n} \cdot C_{1}<T / 14=1 /\left(14 f_{c}\right)
$$

Hence

$$
q_{c h, \text { min }}=L^{2} /\left(R_{o n, \text { max }} \cdot \mu\right)=14 \cdot L^{2} \cdot f_{c} \cdot C_{1} / \mu
$$

and

$$
v_{e r r, \min }=d \cdot q_{c h, \text { min }} / C_{1}=14 \cdot d \cdot L^{2} \cdot f_{c} / \mu
$$

Pedestal voltage
where $d=q_{s} / q_{c h}$

Clock Feedthrough

Capacitive coupling of clock signal via overlap Cov between gate and source. The resulting charge error is

$$
q_{o v}=-V_{d d} \cdot C_{o v} \cdot C_{1} /\left(C_{1}+C_{o v}\right)
$$

It adds to qs. Usually, $\left|q_{o v}\right| \ll\left|q_{s}\right|$

Linear error .

Same for S_{1} and S_{2}.

Methods for Reducing Charge Injection

- Transmission gates: cancellation if areas are matched. Poor for floating switches, somewhat better for fixed-voltage operation.
- Dummy devices: better for $\mathrm{d} \sim 0.5$.

Advanced-Cutoff Switches

- Signal-dependent charge injection leads to nonlinear distortions; signal-independent one to fixed offset. Advanced-cutoff switches can reduce signal dependence.

Advanced-Cutoff Switches (Cont'd)

- Remaining charge injection is mostly common-mode in a differential stage.
- Suppressed by CMRR. In a single-ended circuit, it can be approximated by dummy branch:

Floating Clock Generator

- To reduce signal dependence, reference the clock signal to vin:

- This makes Ron also signal independent, so the settling is more linear. Clock feedthrough remains signal dependent, but it is a linear effect anyway. Better phasing : precharge Cb to VDD during phase 2, connect to vin during phase 2.

Charge Injection in a Comparator

- Remains valid if input phases are interchanged.

Delta-Sigma ADC

Junction Leakage

- $\quad 1 \sim 10 \mathrm{pA} / \mathrm{mil}^{2}, 0.4 \mathrm{pA} / 5 \mu \times 5 \mu$ but doubles for each $10^{\circ} \mathrm{C}$.
- $\mathrm{fmin} \sim 100 \mathrm{~Hz}$ at $20^{\circ} \mathrm{C}$, but 25 KHz at $100^{\circ} \mathrm{C}$.
- Fully differential circuit and Martin compensation converts it to common-mode effect.

Capacitances Inaccuracies

- Depends only on C ratios. Strays are often p-n junctions, leading to harmonic distortion also. For stray-sensitive integrator, all strays should be $<0.1 \%$ of αC.

- ΔC can be systematic or random. Random effects (granularity, edge effects, etc.) cannot be compensated, but systematic ones can, by unit-capacitor/common-centroid construction of $\alpha \mathrm{C}$ and C .

Capacitances Inaccuracies (Cont’d)

- Oxide gradient

$$
\frac{\frac{\Delta \alpha}{\alpha} \sim \frac{-\mathrm{gL}}{\mathrm{t}_{\text {ox, nom }}}}{\mathrm{g}=10-100 \mathrm{ppm} / \mathrm{mil}}
$$

- Common-centroid geometry

Compensated C1/C2 against linear variations of Cox, and edge related systematic errors (undercut, fringing)

Capacitances Inaccuracies (Cont’d)

- Voltage and temperature coefficients

$$
\begin{array}{lll}
\gamma_{v}^{c}=\frac{1}{C} \frac{\partial C}{\partial v} & \text { usually } & \left|\gamma_{v}^{c}\right| \sim 10 \mathrm{ppm} / V \\
\gamma_{T}^{c}=\frac{1}{C} \frac{\partial C}{\partial T} & \text { usually } & \left|\gamma_{T}^{c}\right| \sim 20 \mathrm{ppm} / V
\end{array}
$$

Smaller for ratios, especially for common-centroid layout:

\qquad
Fringing, undercut: systematic edge effects. Reduced by commoncentroid geometry, since perimeter/area ratio is the same for C1 and C2, $\Delta C \propto$ perimeter,$C \propto$ area

OPAMP Input Offset

- In most analog IC, the active element is the opamp. It is used to create a virtual ground (or virtual short circuit) at its input terminals:

- This makes lossless charge transfer possible. In fact, in a CMOS IC, $i \approx 0$ but $v \neq 0$ due to offset, $1 / f$ and thermal noise and finite opamp gain A. Typically, $|v|=5-10 \mathrm{mV}$. This affects both the dc levels and the signal processing properties. The effect of v is even more significant in a low-voltage technology where the signal swing is reduced, and A may be low since cascoding may not be available.

Techniques for Reducing the Effect of Imperfect Virtual-Grounds

- Autozeroing or Correlated Double Sampling Schemes:

Scheme A: Stores and subtracts v at the input or output of the opamp;
Scheme B: Refers all charge redistributions to a (constant) vinstead of ground;
Scheme C: Predicts and subtracts v, or references charge manipulations to a predicted.

- Compensation using extra input: An added feedback loop generates an extra input to force the output to a reset value for zero input signal.
- Chopper stabilization: The signal is modulated to a "safe" (low-noise) frequency range, and demodulated after processing.
- Mixed-mode schemes: Establish a known analog input, use digital output for correction.

Circuits Using Autozeroing

- Comparators
- Amplifiers
- S/H, T/H, delay stages
- Data converters
- Integrators
- Filters
- Equalizers

Simple Autozeroed Comparator

Nonidealities represented by added noise voltage:

$$
v_{n}=v^{-}=V_{\text {os }}+v_{1 / f}+v_{\text {thermal }}-\mu v_{\text {out }} ; \quad \mu=1 / A_{\text {opamp }}
$$

Input-referred noise at the end of interval:

$$
v_{n, i n}(n)=v_{n}(n)-v_{n}(n-1 / 2)
$$

Transfer function without folding: $\left|H_{N}\right|^{2}=4 \sin ^{2}(\omega T / 4)$
Vos, $\mathrm{V} 1 / \mathrm{f}$ and (for oversampled signals) μ Vout may be reduced by H_{N}. Here, μ Vout is not considered, since it is not important for a comparator.

An Offset- and Finite-Gain-Compensated SC Amplifier

Haug et al., 1984 ISCAS

CTT

$$
\frac{C_{1}}{C_{2}} V_{i n}(n)
$$

Analysis of Compensated Gain Amplifier

Input-output relation for inverting operation:

$$
v_{\text {out }}(n)=-C_{1} / C_{2} v_{\text {in }}(n)+\left(1+C_{1} / C_{2}\right)\left[v^{-}(n)-v^{-}(n-1 / 2)\right]
$$

The S/H capacitor switches from 0 to

$$
\begin{aligned}
& v^{-}(n)=V_{o s}-\mu v_{\text {out }}(n-1 / 2) \quad \text { as } \quad \phi_{1} \rightarrow 1 \text {. Hence, } \\
& v_{\text {out }}(n-1 / 2)-v_{\text {out }}(n-1)=V_{\text {os }}-\mu v_{\text {out }}(n-1 / 2), \text { where } \quad \mu=1 / A .
\end{aligned}
$$

At low signal frequencies where $v_{\text {out }}(n) \cong v_{\text {out }}(n-1)$,
the error term is only $\left(1+C_{1} / C_{2}\right) \mu^{2} v_{\text {out }}$. The dc gain is

$$
H(1)=\frac{-C_{1} / C_{2}}{\left(1+C_{1} / C_{2}\right) \mu^{2} \bullet+1}
$$

The output step at reset is only $A_{v} \cong V_{\text {os }}-\mu v_{\text {out }}-\left(C_{1} / C_{3}\right) \Delta v_{\text {in }}$, where the last term enters for noniverting operation only. Av is usually $1 \sim 10 \mathrm{mV}$. The slewing required is minimal. The output offset is $\mu\left(1+C_{1} / C_{2}\right) V_{o s}$.

Error in $\mathrm{H}(1)$: denom. should have +1 . Clock feedthrough generates some residual offset. Can be used as a compensated delay stage.

Finite Opamp DC Gain Effect

```
For \(A_{0} \rightarrow \infty, \quad H_{i}\left(e^{j \omega x}\right)=\frac{-\left(C_{1} / C_{2}\right) e^{(j \omega T) / 2}}{2 \sin ((\omega T) / 2)}\)
For \(A_{0}<\infty, \quad H\left(e^{j \omega t}\right)=(1+m(\omega)) e^{j \theta(\omega)} H_{i}\left(e^{j \omega T}\right)\).
```

Here, the relative gain error $m \cong-\left(1 / A_{0}\right)\left(1+C_{1} /\left(2 C_{2}\right)\right)$
the relative phase error $\theta \cong\left(C_{1} / C_{2}\right) /\left(A_{0} \omega T\right)$.
(Martin, PhD thesis, U of Toronto, 1980)

Equations valid only for high frequencies. At unity-gain freq. $\omega_{i}: 2 \sin \left(\omega_{i} T / 2\right)=C_{1} / C_{2}, m\left(\omega_{i}\right) \sim \theta\left(\omega_{i}\right) \sim-1 / A_{0}$ Usually, the magnitude error is smaller the (C1/C2) error and is negligible. The phase error shifts poles/zeros horizontally, like dissipation: important!

Finite Opamp DC Gain Effect (Cont'd)

Non-inverting integrator: similar derivation, same $m(\omega), \theta(\omega)$. In a biquad, $s_{p} \rightarrow s_{p}\left(1-1 / A_{0}\right)$ due to $m(\omega)$. The phase errors result in

$$
\begin{array}{r}
\frac{1}{Q_{p}} \rightarrow \frac{1}{Q_{p}}+\theta_{1}\left(\omega_{0}\right)+\theta_{2}\left(\omega_{0}\right) \sim \frac{1}{Q_{p}}+\frac{2}{A_{0}} \\
C_{2}
\end{array}
$$

Change in peak gain: $-20 \lg \left(1+2 Q_{p} / A_{0}\right)$ (in dB)
can be large for $Q_{p} \gg 1$!
For $Q_{p}=15, A_{0}=1000, \Delta G \sim-0.26 d B$
$\operatorname{High} Q_{p} \rightarrow$ use high A_{0} opamp! Gain-squaring integrators!

Model for Finite - Gain Effect

$$
\Delta Q_{i}=Y_{i}\left(V_{i}^{+}-V_{i}^{-}\right)
$$

is the charge flow in one clock period

$$
\begin{aligned}
& \text { For } A_{O} \rightarrow \infty, \Delta Q_{1}=Y_{1} V_{i n}=-\Delta Q_{2}=-Y_{2} V_{o} \\
& \text { so } H(z)=V_{O} / V_{i n}=-\boldsymbol{Y}_{1} / Y_{2}
\end{aligned}
$$

Model for Finite - Gain Effect (Cont'd)

For finite A_{O},

$$
\begin{gathered}
\Delta Q_{1}=Y_{1}\left(V_{i n}+V_{o} / A_{O}\right)=-Q_{2}=-Y_{2}\left(V_{o}+V_{o} / A_{o}\right) \\
H(z)=-Y_{1} /\left(Y_{2}+Y_{1} / A_{o}+Y_{2} / A_{o}\right)
\end{gathered}
$$

so the model is

Correlated Level Shifting

R. Gregoire,JSSC, 2008

- Additional capacitor (Ccls) at the output of the amplifier
- Working principle (integrator):
a) Sampling phase;
b) Estimating phase: coarse integration and charging of Ccls
- Voltage left in C1:

$$
V_{c 1(e s t)}=-\frac{V_{\text {out }(\text { est })}}{A}
$$

c) Level shifting phase: connecting Ccls inside the loop, and performing fine integration

- Voltage left in C1:

$$
V_{c 1(l s)}=-\frac{V_{\text {out }(l s)}-V_{\text {out }(e s t)}}{A}
$$

- Volage lett in
- For two-stage compensated opamp, the compensate cap should be included in the CLS loop.
- Ideally, CLS can boost the DC gain from A to A^{2}.

Lev. Shift

Finite Opamp Bandwidth Effect

One-pole opamp model:

$$
A_{v}(s)=\frac{-\omega_{0}}{s-s_{1}} \approx \frac{-1}{s / \omega_{0}+1 / A_{0}}=\frac{V_{o}(s)}{V(s)} \quad \bullet \omega o \text { UNITY GAIN FREQUENCY }
$$

Or, in time domain,

Combine with KVL, charge conservation. Finding and sampling $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$, calculating $\mathrm{V}_{\circ}(\mathbf{z}) / \mathrm{V}_{\mathrm{i}}(\mathbf{z})$, and setting $z=e^{j \omega T}$, for an inverting integrator results in

$$
\begin{aligned}
& m(\omega)=-e^{-k_{1}}(1-k \cos \omega T) \\
& \theta(\omega)=-e^{-k_{1}} k \sin \omega T
\end{aligned}
$$

Where $k=C_{2} /\left(C_{1}+C_{2}\right)$ is the feedback factor. $k_{1}=k \omega_{0} T / 2=k \pi f_{0} / f_{c}$ should be >>1.
Time constant: $\tau=1 /\left(k \omega_{0}\right) \quad$ should be $\ll \mathbf{T} / 2$.

Finite Opamp Bandwidth Effect (Cont'd)

Since $k_{1}=k \pi \omega_{0} / \omega_{c}$, for $\mathrm{k} \sim 1$, if $\omega_{0} \geq 5 \omega_{c}$ then $k_{1} \geq 15$ and
$e^{-k_{1}}<3 \cdot 10^{-7}$, so both m and θ are negligible. Hence, for $\mathrm{C}_{1} \ll \mathrm{C}_{2}$, use
$\omega_{0} \geq 5 \omega_{c} \cdot \quad \cdot C L O C K$ FR. > 20.NYQUIST FREQU. FOR AAF.
For $k<1$, even higher ω_{o} may be needed. Due to the exponential behavior, the error increases rapidly if $\omega 0$ is too small!

The derivation assumes vin(t) is constant. If several stages settle simultaneously, or if there is a continuous-time loop of opamp and coupling C's, then computer analysis (SWITCAP, Fang/Tsividis) is needed.

Time Constant of OTA-SC Integrator

$$
\begin{aligned}
& \cdot \text {-BETA: FEEDBACK } \cdot V_{\mathbf{1}}=\frac{-\beta g_{m} v^{-}}{s\left(C_{L}+C_{s}\right)} \\
& \cdot \text { FACTOR }
\end{aligned}
$$

- Open-loop Gain
$\cdot g_{m} V^{-}+s C_{L} V_{o}+s C_{S} V_{o}=0$

$$
\cdot C_{S} \triangleq \frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

$$
\cdot V_{o}=\frac{-g_{m} V^{-}}{s\left(C_{L}+C_{S}\right)}
$$

$$
\cdot V_{1}=\beta V_{O} \quad \cdot \beta \triangleq \frac{C_{2}}{C_{1}+C_{2}}
$$

- At pole $S_{P}, V_{1}=V^{-}$

$$
\cdot S_{p}=\frac{-\beta g_{m}}{C_{L}+C_{S}}=\frac{-C_{2} g_{m}}{C_{L}\left(C_{1}+C_{2}\right)+C_{1} C_{2}}
$$

-Transient term:

$$
\cdot e^{s_{p} t}=e^{-t / \tau} \quad \cdot \tau=\frac{1}{\left|s_{p}\right|}=\frac{C_{L}+C_{S}}{\beta g_{m}}
$$

-Unity-gain conventional integrator, assuming all C is equal:

$$
\cdot \tau=\frac{3 C}{g_{m}}
$$

Integrator Using a Two-Stage (Buffered) Opamp (VCVS)

$$
\begin{gathered}
\cdot A_{V}=\frac{A_{0}}{S / \omega_{p}+1} \quad \cdot \text { Let Initial Values be } V_{C 1}=V_{1}, V_{C 2}=0 \\
\cdot I=\left(V_{1}-V_{0}\right) \frac{s C_{1} C_{2}}{C_{1}+C_{2}}=s C_{2}\left(V^{-}-V_{0}\right)
\end{gathered}
$$

Integrator Using a Two-Stage (Buffer) Opamp

$\cdot V_{0}=-A_{V} V^{-} \cong V_{1} \frac{1-\beta}{S /\left(A_{0} \omega_{p}\right)^{+\beta+1 / A_{0}}} \quad \cdot \beta \triangleq \frac{C_{2}}{C_{1}+C_{2}}$
-Pole at:

$$
\cdot-\left(\beta+1 / A_{0}\right) A_{0} \omega_{p} \cong-\beta \omega_{u}
$$

-Time Constant:

$$
\cdot \tau \cong 1 / \beta \omega_{u}
$$

-Settling level: $\left.\cdot V_{O}(S)\right|_{s=0}=\frac{1-\beta}{\beta+1 / A_{0}} \cong-\frac{C_{1}}{C_{2}}$

High-Q Biquad

- For original phases, both opamps settle when $\Phi_{2} \rightarrow 1$. Changing the ${ }^{*} \Phi 1$, they settle separately. V1 changes twice in one cycles, but OA1 still has the same $\mathrm{T} / 2$ time (T for the change at $\Phi_{1} \rightarrow 1$.) to settle and to charge C3. The transient when $\Phi_{2} \rightarrow 1$ has a full period to settle in OA1 and OA2 .

Slew Rate Estimation (1)

Nonlinear slewing followed by linear settling:

$t_{\text {slew }}=x T_{2} \sim x T / 2$
$S_{r}=\left|\left(d v_{\text {out }}\right) /(d t)\right|_{\max }$. For $v(t)=V_{\max } \sin \omega_{B} t$ where ω_{B} is the maximum sine wave freq. at input, the slope $|d v / d t|$ of the envelope $v(t)$ is $\leq \omega_{B} V_{\max }$. Then $S_{r} \sim 2 \omega_{B} V_{\max } / x$, very pessimistic estimate!

Slew Rate Estimation (2)

- Much simpler estimate can be based on assuming that Cin is fully discharged in the slewing phase. Then the slew current can be found from
- $I_{s} \sim$ Cin.Vin,max/[x.T/2]
- Less pessimistic than the previous estimate.

Noise Considerations

- Clock feedthrough from switches
- External noise coupled in from substrate, power lines, etc
- Thermal and $1 / \mathrm{f}$ noise generated in switches and opamps
(1) Has components at $f=0$, fc, can be reduced by dummy switches, differential circuit, etc. May be signal dependent!
(2) Discussed elsewhere.
(3) Thermal noise in MOSFETs: PSD is

$$
S_{T}=\frac{\overline{v_{n T}^{2}}}{\Delta f}=4 \theta R \quad, \quad \theta=k T
$$

For $f \geq 0$, only (one-sided distribution).
Flicker noise:

$$
S_{f}=\frac{\overline{v_{n I}^{2}}}{\Delta f}=\frac{k}{C_{o x} W L f}
$$

Total noise PSD: S=St+Sf.

Noise Considerations (Cont'd)

- Noise spectra

- Offset compensation (CDS—correlated double sampling); subtracts noise, $\mathrm{T} / 2$ second delayed.

$$
\begin{aligned}
& H_{C D S}=1-e^{-j \omega T / 2} \\
& |H|^{2}=4 \sin ^{2}(\omega T / 4)
\end{aligned}
$$

CDS:

1. Pick up noise, no signal;
2. Pick up noise, plus signal;
3. Substract the two.

Chopper Stabilization

Fully differential circuits needed.

Chopper Stabilization (Cont’d)

Differential SC amplifier using chopping.

Noise Aliasing

Mean-square values are the same (θ / C) within all windows.

Direct noise power: $\overline{\left(v_{c n}^{d}\right)^{2}}=\frac{m \theta}{C}$
S/H PSD: $\frac{\overline{\left(\frac{(v / h / H}{}\right)^{2}}}{\Delta f}=\left(\frac{\tau \sin f \tau \pi}{T f \tau \pi}\right)^{2} \cdot \sum_{k=-\infty}^{k=\infty} S\left(f-k f_{c}\right)$

S(f): RC filtered direct noise Most noise at dc!

Equivalent Circuit for Direct Noise

S(f) for direct noise: low-pass filtered and windowed white noise.

For satisfactory settling (0.1\%), $R_{o n} C \leq m T / 7=m /\left(7 f_{c}\right), \quad f_{s w} \geq 3.5 f_{c}$.

Noise Aliasing

Aliasing for $f_{s v}=5 f_{c}$

$\mathbf{S}(\mathbf{f})$ is magnified by $2 f_{s w} / f_{c}=10!$ The $\mathbf{P S D}$ is $\theta /\left(C f_{c}\right)$ after aliasing (i.e. sampling but not holding).
Noise power = kT/C.

Noise Spectra

For low frequencies ($\mathrm{f} \ll \mathrm{fc}$)

$$
\begin{aligned}
& S^{s / H}(f) \approx \frac{(1-m)^{2} \theta}{f_{c} C} \text { decreases with } \mathbf{m}^{\uparrow} \\
& S^{d}(f) \approx 2 m \theta R_{o n} \quad \text { increases with } \mathbf{m}^{\uparrow}
\end{aligned}
$$

Low frequency noise ratio $\quad r=\frac{S^{S / H}}{S^{d}} \approx \frac{(1-m)^{2}}{2 m} \frac{1}{f_{c} R_{o n} C}$
$r \geq 3.5(1 / m-1)^{2}>3.5$
For $m=0.25, r=31.5$!
Noise generated in stage independent of Ron, but the noise generated in preceding stages (direct noise) gets filtered, so the Ron should be as large as possible!

Switched-Capacitor Noise

Two situations; example:

Situation 1: only the sampled values of the output waveform matter; the output spectrum may be limited by the DSP, and hence $\mathrm{V}_{\text {RMs, }}$ reduced. Find $\mathrm{V}_{\text {RMs }}$ from $\sqrt{ }$ KTC charges; adjust for DSP effects.

Situation 2: the complete output waveform affects the SNR, including the S / H and direct noise components. Usually the S / H dominates. Reduced by the reconstruction filter.

Calculation of SC Noise (Summary)

- In the switch-capacitor branch, when the switch is on, the capacitor charge noise is lowpass-filtered by Ron and C . The resulting charge noise power in C is kTC . It is a colored noise, with a noisebandwidth $\mathrm{fn}=1 /(4 \mathrm{RonC})$. The low-frequency PSD is 4 kTRon .
- When the switch operates at a rate fc<<fn, the samples of the charge noise still have the same power kTC, but spectrum is now white, with a PSD=2kTC/fc. For the situation when only discrete samples of the signal and noise are used, this is all that we need to know.
- For continuous-time analysis, we need to find the powers and spectra of the direct and S / H components when the switch is active. The direct noise is obtained by windowing the filtered charge noise stored in C with a periodic window containing unit pulses of length m / fc. This operation (to a good approximation)
- simply scales the PSD, and hence the noise power, by m. The lowfrequncy PSD is thus 4mkTRon.

Calculation of SC Noise (Summary) (Cont'd)

To find the PSD of the S/H noise, let the noise charge in C be sampled and- held at fc, and then windowed by a rectangular periodic window
$\mathrm{w}(\mathrm{t})=0$ for $\mathrm{n} / \mathrm{fc}<\mathrm{t}<\mathrm{n} / \mathrm{fc}+\mathrm{m} / \mathrm{fc}$
$\mathrm{w}(\mathrm{t})=1$ for $\mathrm{n} / \mathrm{fc}+\mathrm{m} / \mathrm{fc}<\mathrm{t}<(\mathrm{n}+1) / \mathrm{fc}$
$n=0,1,2, \ldots$
Note that is windowing reduces the noise power by (1-m) squared(!), since the S / H noise is not random within each period.

Usually, at low frequencies the S/H noise dominates, since it has approximately the same average power as the direct noise, but its PSD spectrum is concentrated at low frequencies. As a first estimate, its PSD can be estimated at $2(1-m)^{2} k T /\left(f_{c} C\right)$ for frequencies up to fc/2.

